首页> 外文OA文献 >Static friction of sinusoidal surfaces: a discrete dislocation plasticity analysis
【2h】

Static friction of sinusoidal surfaces: a discrete dislocation plasticity analysis

机译:正弦表面的静摩擦:离散位错塑性分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Discrete dislocation plasticity simulations are carried out to investigate the static frictional response of sinusoidal asperities with (sub)-microscale wavelength. The surfaces are first flattened and then sheared by a perfectly adhesive platen. Both bodies are explicitly modelled, and the external loading is applied on the top surface of the platen. Plastic deformation by dislocation glide is the only dissipation mechanism active. The tangential force obtained at the contact when displacing the platen horizontally first increases with applied displacement, then reaches a constant value. This constant is here taken to be the friction force. In agreement with several experiments and continuum simulation studies, the friction coefficient is found to decrease with the applied normal load. However, at odds with continuum simulations, the friction force is also found to decrease with the normal load. The decrease is caused by an increased availability of dislocations to initiate and sustain plastic flow during shearing. Again in contrast to continuum studies, the friction coefficient is found to vary stochastically across the contact surface, and to reach locally values up to several times the average friction coefficient. Moreover, the friction force and the friction coefficient are found to be size-dependent.
机译:进行离散位错可塑性模拟,以研究具有(亚)微米波长的正弦粗糙物的静摩擦响应。首先将表面弄平,然后用完全粘合的压板剪切。对两个物体都进行了显式建模,并将外部载荷施加到压板的顶面上。位错滑行引起的塑性变形是唯一有效的耗散机制。当水平移动压板时,在接触处获得的切向力首先随着施加的位移而增加,然后达到恒定值。在此将该常数作为摩擦力。与一些实验和连续模拟研究相一致,发现摩擦系数随着施加的法向载荷而减小。但是,与连续模拟不同的是,还发现摩擦力会随着法向载荷而减小。减少的原因是,在剪切过程中位错可利用性增加,以引发并维持塑性流动。再次与连续性研究相反,发现摩擦系数在整个接触表面上是随机变化的,并且局部达到高达平均摩擦系数几倍的值。此外,发现摩擦力和摩擦系数与尺寸有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号